

NEW RHODOMYCINONE FROM THE STRAIN
Streptomyces griseoruber 4620

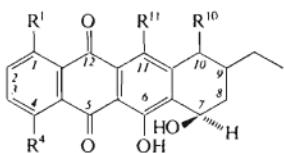
Věra PŘIKRYLOVÁ^a, Miloslav PODOJIL^a, Petr SEDMERA^a, Jindřich VOKOUN^a,
 Zdeněk VANĚK^a, Mariya G. BRAZHNÍKOVA^b and Margareta K. KUDINOVÁ^b

^a Institute of Microbiology,

Czechoslovak Academy of Sciences, 142 20 Prague, Czechoslovakia and

^b Institute of New Antibiotics,

Academy of Medical Sciences of USSR, Moscow, USSR


Received September 13th, 1979

New anthracyclinone, 10-deoxy- β -rhodomycinone (*V*), was isolated from the strain *Streptomyces griseoruber* 4620 besides β -rhodomycinone (*I*), β -isorhodomycinone (*II*), α_2 -rhodomycinone (*III*), and ϵ -rhodomycinone (*IV*). The identification and the structure elucidation are based on the UV, CD, IR, ¹H-NMR and mass spectra.

The antibiotics beromycin A, B and C have been isolated from the strain *Streptomyces griseoruber* 4620 and preliminarily reported as the members of the anthracycline group¹. Working with one variant of this strain, we now proved the presence of another antibiotics in the extracts of the fermentation broth and the mycelium². The hydrolysis of the mixture of these antibiotics afforded four already known aglycones: β -rhodomycinone³ (*I*), β -isorhodomycinone⁴ (*II*), α_2 -rhodomycinone⁵ (*III*) and ϵ -rhodomycinone⁶ (*IV*). The mixture contains another red compound melting at 218–210°C. The subject of this communication is the structural proof of the isolated aglycones.

The unknown compound has a summary formula C₂₀H₁₈O₇ (high resolution mass spectrometry). Its ¹H-NMR spectrum contains a three-proton triplet of the primary methyl group at 1.08 ppm (*J* = 7.3 Hz) and a corresponding two-proton quartet at 1.92 ppm (*J* = 7.3 Hz), a two-proton singlet at 1.82 ppm, a doublet of doublets at 3.13 ppm (*J* = 15.9 and 1.8 Hz), a doublet at 4.33 ppm (*J* = 4.9 Hz), a multiplet at 4.76 ppm (*J* = 4.9, 1.8 and 1.2 Hz), a broad singlet at 5.09 ppm, a doublet of doublets at 7.31 ppm (*J* = 7.2 and 2.2 Hz), a triplet at 7.70 ppm (*J* = 7.2 Hz), a doublet of doublets at 7.88 ppm (*J* = 7.2 and 2.2 Hz) and three singlets at 12.27, 12.80 and 13.88 ppm. The last three protons and the protons giving rise to a doublet at 4.33 ppm and to a singlet at 5.09 ppm are exchanged for deuterium upon the addition of the perdeuteroacetic acid. That means that the molecule contains one secondary and four tertiary hydroxyl groups. Using the chemical shift information, three of them can be assigned to phenolic hydroxyls. Two of the total

three aromatic protons exhibit each one *ortho*- and one *meta*-coupling; the remaining aromatic proton has two *ortho*-couplings. Therefore, these protons represent a system of three vicinal aromatic protons in the same ring. The chemical shift of the methine proton due to the secondary alcohol group suggests its location in the α -position to a double bond. Its small couplings to the protons at 2.75 and 3.13 ppm, whose mutual coupling ($J = J_{\text{gem}} = 15.9$ Hz) allows their unambiguous assignment to the methylene group protons and indicates its quasiequatorial orientation⁷. The absence of any further couplings of the above mentioned methylene protons implies that the carbon atom vicinal to this does not carry any protons. The ethyl group must be attached to a similar atom since it exhibits the spectrum of the A_3B_2 type. Also the two-proton singlet at 1.82 ppm can be interpreted as the signal of the protons of an isolated methylene group. The infrared spectrum contains a band at 1600 cm^{-1} (chelated quinone carbonyl). This fact plus the information on the number of the phenolic groups indicates the presence of the 1,4,5-trihydroxyanthraquinone system.

There is a missing OH group at C₍₉₎

	R ¹	R ⁴	R ¹⁰	R ¹¹
I,	H	OH	OH	OH
II,	OH	OH	OH	OH
III,	OH	OH	OH	H
IV,	H	OH	COOCH ₃	OH
V,	H	OH	H	OH
VI,	OH	H	H	OH

This deduction is supported by the similarity of the electronic spectrum of this compound with that of β -rhodomycinone (I) indicating the same substitution pattern of the chromophore by the hydroxyl groups^{8,9}. However, according to the elemental composition, our compound contains one oxygen atom less. The observed fragmentation, especially the elimination of two molecules of water and the loss of C_4H_8O are quite common with C_{20} -anthracyclinones. The elimination of C_4H_8O from the molecular ion is interpreted as a retro-Diels-Alder rearrangement¹⁰ and can be used as an evidence for the positioning of the ethyl group in the β -position to the aromatic system. The loss of C_3H_5O corresponds to the splitting of C₍₉₎, with both its substituents accompanied by the hydrogen transfer; the same fragmentation was described by Brockmann and coworkers¹¹ with 10-deoxy- γ -rhodomycinone. All the observed facts are satisfied by the structures V and VI. We prefer the former as the

more probable one from the viewpoint of biogenesis. The absolute configuration at C₍₇₎ was determined as 7S from the circular dichroism (CD) curve since 10-deoxy- β -rhodomycinone (V) has the same Cotton effect as the anthracyclines measured by Brockmann and coworkers^{12,13} in the region 270–380 nm.

EXPERIMENTAL

The melting point was determined in a Kofler hot stage. Electronic spectra were measured on a Cary 118 C spectrophotometer in cyclohexane or chloroform. The infrared spectra were measured in KBr pellets on a Unicam SP 200 instrument. Mass spectra were measured on a Varian MAT 311 spectrometer at the energy and current of ionizing electrons 11 aJ (70 eV) and 1 mA, respectively; the ion source temperature was 200°C, the temperature of direct inlet system was 150–170°C. High resolution measurement of all ions discussed above was made by the "peak matching" technique with perfluorokerosene as the standard (error \pm 5 ppm). The ¹H-NMR spectra were measured on a Jeol FX 60 spectrometer (FT mode, 59–797 MHz) at 25°C in deuterio-chloroform with some hexadeuteriodimethyl sulfoxide added or in pentadeuteriopyridine. Tetramethylsilan was employed as an internal standard. Chemical shifts were calculated from the digitally obtained address differences (\pm 0.02 ppm). The circular dichroism (CD) curve was measured on a Rousell-Jouan CD 185/II dichrograph at 25°C in a 0.1 cm cell in dioxane. The data are given in the molecular ellipticities [Θ] deg cm² dmol⁻¹. The R_F values were obtained from TLC on Silufol 20 in the system chloroform–methanol 14 : 1. The melting points of our isolates agreed with the literature data within 2°C. The positions of the UV maxima were identical within 2 nm. The maximum difference of the ¹H-NMR parameters was 0.37 ppm. The agreement of the mass spectra involved *m/z* values and relative intensities of the eight most abundant peaks.

Isolation of Rhodomycinones

The cultivation of the strain *S. griseoruber* 4620 in a 300 l tank, the work-up of the mycelium and the fermentation broth, the isolation of the mixture of antibiotics, their hydrolysis and the isolation of individual rhodomycinones is described elsewhere².

β -Rhodomycinone (I): m.p. 225–226°C (CH₃COOH); R_F 0.44. UV/VIS spectrum λ_{max} (cyclohexane): 394, 464, 481, 492, 514, 528 nm. IR spectrum (KBr): 1600 cm⁻¹ (chelated quinone). Mass spectrum: *m/z* 386 (C₂₀H₁₈O₈, 2%, M⁺), 368 (C₂₀H₁₆O₇, 12%, M–H₂O), 350 (C₂₀H₁₄·O₆, 42%, M–2 H₂O), 335 (C₂₀H₁₅O₅, 19%), 335 (C₁₉H₁₁O₆, 19%), 334 (C₂₀H₁₄O₅, 100%), 319 (C₁₉H₁₁O₅, 36%), 314 (C₁₆H₁₀O₇, 24%, M–C₄H₈O), 312 (C₁₇H₁₂O₆, 21%), 311 (C₁₇H₁₁O₆, 21%), 307 (C₁₈H₁₁O₅, 14%), 296 (C₁₆H₈O₆, 44%, M–C₄H₈O–H₂O), 294 (C₁₇H₁₀O₅, 19%) 286 (C₁₅H₁₀O₆, 10%, M–C₄H₈O–CO), 284 (C₁₆H₁₂O₅, 12%), 283 (C₁₆H₁₁O₅, 14%), 270 (C₁₅H₁₀O₅, 19%). ¹H-NMR spectrum (C₅D₅N): 1.35 (t, 7.3 Hz, 3 H), 2.17 (q, 7.3 Hz, 2 H), 2.53 (mt, 2 H), 5.53 (s, 1 H), 5.57 (mt, 1 H), 7.39–8.04 (mt, ABC, 3 H).

β -Isorhodomycinone (II): m.p. 215–217°C (CHCl₃); R_F 0.45. UV/VIS spectrum λ_{max} (chloroform): 492, 514, 524, 551, 563 nm. IR (KBr): 1595 cm⁻¹ (chelated quinone). Mass spectrum: *m/z* 402 (C₂₀H₁₈O₉, 6% M⁺), 384 (C₂₀H₁₆O₈, 31%, M–H₂O), 368 (C₂₀H₁₆O₇, 26%), 366 (C₂₀H₁₄O₇, 100%, M–2 H₂O), 351 (C₁₉H₁₁O₇, 54%), 350 (C₂₀H₁₄O₆, 85%), 335 (C₁₉H₁₁O₆, 20%), 335 (C₂₀H₁₅O₅, 10%), 334 (C₂₀H₁₄O₅, 25%), 330 (C₁₆H₁₀O₈, 36%, M–C₄H₈O), 327 (C₁₇H₁₁O₇, 46%), 323 (C₁₈H₁₁O₆, 15%), 319 (C₁₉H₁₁O₅, 9%), 314 (C₁₆·H₁₀O₇, 32%), 312 (C₁₆H₈O₇, 26%, M–C₄H₈O–H₂O), 312 (C₁₇H₁₂O₆, 52%), 311 (C₁₇H₁₁·O₆, 48%), 310 (C₁₇H₁₀O₆, 45%), 296 (C₁₇H₁₂O₅, 31%), 286 (C₁₅H₁₀O₆, 30%), 284 (C₁₆H₁₂·O₅, 14%).

\cdot O₅, 13%), 283 (C₁₁H₁₁O₅, 21%), 270 (C₁₅H₁₀O₅, 21%). ¹H-NMR spectrum (C₅D₅N): 1.37 (t, J = 7.3 Hz, 3 H), 2.20 (q, J = 7.3 Hz, 2 H), 2.51 (mt, 2 H), 5.49 (s, 1 H), 5.23 (mt, 1 H), 7.35 (s, 2 H).

α_2 -Rhodomycinone (III): m.p. 207–209°C (CH₃COOH); R_F 0.38. UV/VIS spectrum λ_{max} (cyclohexane): 465, 483, 495, 517, 531 nm. IR spectrum (KBr): 1595 cm⁻¹ (chelated quinone). Mass spectrum: m/z 386 (C₂₀H₁₈O₈, 2%, M⁺), 368 (C₂₀H₁₆O₇, 49%, M–H₂O), 352 (C₂₀H₁₆O₆, 16%), 350 (C₂₀H₁₄O₆, 14%, M–2 H₂O), 335 (C₁₉H₁₁O₆, 16%), 334 (C₂₀H₁₄O₅, 34%), 319 (C₂₀H₁₁O₅, 19%), 314 (C₁₆H₁₀O₇, 34%, M–C₄H₈O), 312 (C₁₇H₁₂O₆, 61%), 311 (C₁₇H₁₁O₆, 100%), 307 (C₁₈H₁₁O₅, 8%), 296 (C₁₆H₈O₆, 60%, M–C₄H₈O–H₂O), 296 (C₁₇H₁₂O₅, 15%), 294 (C₁₇H₁₀O₅, 27%), 283 (C₁₆H₁₁O₅, 14%), 270 (C₁₅H₁₀O₅, 18%), 268 (C₁₅H₁₈O₅, 16%). ¹H-NMR spectrum (C₅D₅N): 1.33 (t, J = 7.3 Hz, 3 H), 2.23 (q, J = 7.3 Hz, 2 H), 2.40 (dd, J = 14.7 and 1.2 Hz, 1 H), 2.78 (dd, J = 14.7 and 4.9 Hz, 1 H), 5.25 (mt, 1 H), 5.53 (s, 1 H), 7.33 (s, 2 H), 8.35 (s, 1 H).

ϵ -Rhodomycinone (IV): m.p. 210–212°C (CH₃COOH); R_F 0.82. UV/VIS spectrum λ_{max} (cyclohexane): 483, 493, 515, 529 nm. IR spectrum (KBr): 1610 cm⁻¹ (chelated quinone), 1740 cm⁻¹ (ester C=O). Mass spectrum: m/z 428 (C₂₂H₂₀O₉, 11%, M⁺), 410 (C₂₂H₁₈O₈, 3%, M–H₂O), 392 (C₂₂H₁₆O₇, 11%, M–2 H₂O), 376 (C₂₁H₁₂O₇, 25%), 368 (C₂₀H₁₆O₇, 6%), 360 (C₂₁H₁₂O₆, 100%, M–2 H₂O–CH₃OH), 351 (C₂₀H₁₅O₆, 9%), 350 (C₂₀H₁₄O₆, 6%), 349 (C₂₀H₁₃O₆, 10%), 339 (C₁₈H₁₁O₇, 13%), 335 (C₂₀H₁₅O₅, 10%), 334 (C₂₀H₁₄O₅, 9%), 333 (C₂₀H₁₃O₅, 10%) 323 (C₁₈H₁₁O₆, 14%), 322 (C₁₈H₁₀O₆, 13%), 321 (C₁₈H₉O₆, 7%), 319 (C₁₉H₁₁O₅, 3%), 294 (C₁₇H₁₀O₅, 9%), 203 (C₁₁H₇O₄, 5%), 202 (C₁₁H₆O₄, 5%), 121 (C₇H₅O₂, 7%), 57 (C₃H₅O, 25%). ¹H-NMR spectrum (CDCl₃): 1.14 (t, J = 7.3 Hz, 3 H), 2.05 (q, J = 7.3 Hz, 2 H), 2.28 (mt, 2 H), 3.47 (br s, OH), 3.72 (s, 3 H), 4.27 (s, 1 H), 5.43 (mt, 1 H), 7.28 to 7.96 (mt, 3 H), 12.11 (s, 1 H), 12.92 (s, 1 H), 13.45 (s, 1 H).

10-Deoxy- β -rhodomycinone (V): red-orange needles m.p. 218–220°C (CH₃COOH); R_F 0.67. UV/VIS spectrum λ_{max} (cyclohexane): 391, 411, 464, 484, 495, 517, 531, 564 nm; λ_{max} (ϵ) (chloroform): 391 (2990), 412 (3950), 467 (13330), 496 (17740), 519 (13100), 531 (12600), 564 nm, (1750). IR spectrum (KBr): 1600 cm⁻¹ (chelated quinone). Mass spectrum: m/z 370 (C₂₀H₁₈O₇, 31%, M⁺), 352 (C₂₀H₁₆O₆, 31%, M–H₂O), 336 (C₂₀H₁₆O₅, 8%), 334 (C₂₀H₁₄O₅, 15%, M–2 H₂O), 323 (C₁₉H₁₅O₅, 15%), 311 (C₁₇H₁₁O₆, 7%), 307 (C₁₈H₁₁O₅, 10%), 298 (C₁₆H₁₀O₆, 37%, M–C₄H₈O), 296 (C₁₇H₁₂O₅, 25%), 295 (C₁₇H₁₁O₅, 51%, M–C₃H₅O–H₂O), 286 (C₁₅H₁₀O₆, 9%), 285 (C₁₅H₉O₆, 10%), 270 (C₁₅H₁₀O₅, 100%, M–C₄H₈O–CO), 255 (C₁₄H₇O₅, 11%). ¹H-NMR spectrum (CDCl₃ + (CD₃)₂SO): 1.08 (t, J = 7.3 Hz, 3 H), 1.82 (mt, 2 H), 1.92 (q, J = 7.3 Hz, 2 H), 2.75 and 3.13 (AB part of an ABXY system, J_{AB} = 15.9 Hz, 2 H), 4.33 (d, J = 4.9 Hz, 1 H), 4.76 (mt, J = 4.9, 1.8 and 1.2 Hz, 1 H), 7.31 (dd, J = 7.2 and 2.2 Hz, 1 H), 7.70 (t, J = 7.2 Hz, 1 H), 7.88 (dd, J = 7.2 and 2.2 Hz, 1 H), 12.27 (s, 1 H), 12.80 (s, 1 H), 13.88 (s, 1 H). Circular dichroism (dioxan): 275 nm –1740, 285 nm –1450, 303 nm 0, 320 nm +2620, 355 nm +3780.

REFERENCES

1. Kudinova M. K., Borisova V. N., Petuchova N. M., Brazhnikova M. G.: Antibiotiki (Moscow) **17**, 689 (1972).
2. Podojil M., Blumauerová M., Příkrylová V., Vaněk Z., Gauze G. F., Maksimova T. S.: Folia Microbiol. (Prague), in press.
3. Brockmann H., Boldt P., Niemeyer J.: Chem. Ber. **96**, 1356 (1963).
4. Brockmann H., Niemeyer J., Rode W.: Chem. Ber. **98**, 3145 (1965).

5. Brockmann H., Niemeyer J.: *Chem. Ber.* **101**, 1341 (1968).
6. Brockmann H., Brockmann H., jr: *Chem. Ber.* **94**, 2681 (1961).
7. Brockmann H., Niemeyer J.: *Chem. Ber.* **100**, 3578 (1967).
8. Scott A. I.: *Interpretation of the Ultraviolet Spectra of Natural Products*, p. 286. Pergamon Press, Oxford 1964.
9. Brockmann H., Müller W.: *Chem. Ber.* **92**, 1164 (1959).
10. Budzikiewicz H., Djerassi C., Williams D. H.: *Structure Elucidation of Natural Products by Mass Spectrometry*, p. 247. Holden Day, San Francisco 1967.
11. Brockmann H., Niemeyer J., Brockmann H., jr, Budzikiewicz H.: *Chem. Ber.* **98**, 3785 (1965).
12. Brockmann H., jr, Legrand M.: *Tetrahedron* **19**, 395 (1963).
13. Brockmann H., Brockmann H., jr, Niemeyer J.: *Tetrahedron Lett.* **1968**, 4719.

Translated by the author (P. S.).